参数检验和非参数检验是什么意思
的有关信息介绍如下:参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。
参数检验和非参数检验的本质区别:
1.参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
2.参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。
扩展资料:
参数检验与非参数检验的优缺点。
1)参数检验:优点是符合条件时,检验效率高;其缺点是对资料要求严格,如等级数据、非确定数据(>50mg)不能使用参数检验,而且要求资料的分布型已知和总体方差相等。
2)非参数检验:优点是应用范围广、简便、易掌握;缺点是若对符合参数检验条件的资料用非参数检验,则检验效率低于参数检验。如无效假设是正确的,非参数法与参数法一样好,但如果无效假设是错误的,则非参数检验效果较差,如需检验出同样大小的差异的差异往往需要较多的资料。
另一点是非参数检验统计量是近似服从某一部分,检验的界值表也是有近似的(如配对秩和检验)因此其结果有一定近似性。
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立。
如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
两独立样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布等是否存在显著差异的方法。独立样本是指在一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本。
SPSS中提供了多种两独立样本的非参数检验方法,其中包括曼-惠特尼U检验、K-S检验、W-W游程检验、极端反应检验等。
某工厂用甲乙两种不同的工艺生产同一种产品。如果希望检验两种工艺下产品的使用是否存在显著差异,可从两种工艺生产出的产品中随机抽样,得到各自的使用寿命数据。
参考资料:百度百科——参数检验
参考资料:百度百科——非参数检验