当前位置:去问问>生活百科>抛物线焦点三角形面积怎么推导

抛物线焦点三角形面积怎么推导

2024-11-27 07:14:39 编辑:zane 浏览量:535

抛物线焦点三角形面积怎么推导

的有关信息介绍如下:

焦点弦由两个在同一条直线上的 焦半径构成的。焦点弦长就是这两个 焦半径长之和。⑴过椭圆焦点F的直线交椭圆于A、B两点,记q=a^2/c-c,是焦准距, e是离心率。

令|FE|=m,|ED|=n,则m+n=|FD|= 。易知当且仅当 时取|CD|最小值2a。(配极理论的原则). 若点P的极线通过点Q,则点Q的极线也通过点P。

抛物线焦点三角形面积怎么推导

过双曲线(a>0,b>0)焦点F的直线交双曲线于A、B两点,记p=c-a^2/c,是焦准距。若A、B两点在双曲线的同一支上,此时称AB为双曲线的同支焦点弦。若A、B两点分别位于双曲线的左支和右支上,此时称AB为双曲线的异支焦点弦。

通过一点P而且与一个常态二次曲线相切的直线它的切点在点P的极线上。椭圆、双曲线、抛物线焦点的极线是相应的准线。如果椭圆、双曲线、抛物线的两条切线的交点在准线上,则过切点的直线必过焦点。

这是因为,焦点的极线是相应准线(定理3),又交点在准线上,准线上的点的极线就必过焦点(定理1),而定理2又告诉我们这条过焦点的极线恰好经过两切点。

参考资料来源:百度百科-焦点弦

版权声明:文章由 去问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.qwenw.com/life/431961.html
热门文章