大学数学专业有哪些数学课程?
的有关信息介绍如下:1、数学分析
数学分析又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。
它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。
2、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。
沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。
3、解析几何
解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并发展。它是利用解析式来研究几何对象之间的关系和性质的一门几何学分支,亦叫做坐标几何。
严格地讲,解析几何利用的并不是代数方法,而是借助解析式来研究几何图形。这里面的解析式,既可以是代数的,也可以是超越的——例如三角函数、对数等。通常默认代数式只由有限步的四则运算及开方构成,超越运算一般不属于代数学的研究范畴。
4、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
5、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
参考资料来源:百度百科-数学专业