当前位置:去问问>百科知识>求arcsinx的导数请问过程是怎样的

求arcsinx的导数请问过程是怎样的

2024-08-31 01:30:56 编辑:zane 浏览量:567

求arcsinx的导数请问过程是怎样的

的有关信息介绍如下:

求arcsinx的导数请问过程是怎样的

arcsinx的导数1/√(1-x^2)。

解答过程如下:

此为隐函数求导,令y=arcsinx

通过转变可得:y=arcsinx,那么siny=x。

两边进行求导:cosy × y'=1。

即:y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。

扩展资料

隐函数求导法则

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。

隐函数导数的求解一般可以采用以下方法:

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

版权声明:文章由 去问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.qwenw.com/article/368863.html
热门文章